Package: arc 1.4.1

arc: Association Rule Classification

Implements the Classification-based on Association Rules (CBA) algorithm for association rule classification. The package, also described in Hahsler et al. (2019) <doi:10.32614/RJ-2019-048>, contains several convenience methods that allow to automatically set CBA parameters (minimum confidence, minimum support) and it also natively handles numeric attributes by integrating a pre-discretization step. The rule generation phase is handled by the 'arules' package. To further decrease the size of the CBA models produced by the 'arc' package, postprocessing by the 'qCBA' package is suggested.

Authors:Tomas Kliegr [aut, cre]

arc_1.4.1.tar.gz
arc_1.4.1.zip(r-4.5)arc_1.4.1.zip(r-4.4)arc_1.4.1.zip(r-4.3)
arc_1.4.1.tgz(r-4.4-any)arc_1.4.1.tgz(r-4.3-any)
arc_1.4.1.tar.gz(r-4.5-noble)arc_1.4.1.tar.gz(r-4.4-noble)
arc_1.4.1.tgz(r-4.4-emscripten)arc_1.4.1.tgz(r-4.3-emscripten)
arc.pdf |arc.html
arc/json (API)
NEWS

# Install 'arc' in R:
install.packages('arc', repos = c('https://kliegr.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/kliegr/arc/issues

Datasets:
  • humtemp - Comfort level based on temperature and humidity of the environment

On CRAN:

5.01 score 6 stars 1 packages 38 scripts 341 downloads 3 mentions 16 exports 8 dependencies

Last updated 3 months agofrom:dc414aa281. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-winNOTENov 07 2024
R-4.5-linuxNOTENov 07 2024
R-4.4-winOKNov 07 2024
R-4.4-macOKNov 07 2024
R-4.3-winOKNov 07 2024
R-4.3-macOKNov 07 2024

Exports:applyCutapplyCutscbacba_manualcbaCSVcbaIriscbaIrisNumericCBARuleModelCBARuleModelAccuracydiscretizeUnsuperviseddiscrNumericgetAppearancegetConfVectorForROCmdlp2prunetopRules

Dependencies:arulesdiscretizationgenericslatticeMatrixR.methodsS3R.ooR.utils