Package: arc 1.4.1

arc: Association Rule Classification

Implements the Classification-based on Association Rules (CBA) algorithm for association rule classification. The package, also described in Hahsler et al. (2019) <doi:10.32614/RJ-2019-048>, contains several convenience methods that allow to automatically set CBA parameters (minimum confidence, minimum support) and it also natively handles numeric attributes by integrating a pre-discretization step. The rule generation phase is handled by the 'arules' package. To further decrease the size of the CBA models produced by the 'arc' package, postprocessing by the 'qCBA' package is suggested.

Authors:Tomas Kliegr [aut, cre]

arc_1.4.1.tar.gz
arc_1.4.1.zip(r-4.5)arc_1.4.1.zip(r-4.4)arc_1.4.1.zip(r-4.3)
arc_1.4.1.tgz(r-4.4-any)arc_1.4.1.tgz(r-4.3-any)
arc_1.4.1.tar.gz(r-4.5-noble)arc_1.4.1.tar.gz(r-4.4-noble)
arc_1.4.1.tgz(r-4.4-emscripten)arc_1.4.1.tgz(r-4.3-emscripten)
arc.pdf |arc.html
arc/json (API)
NEWS

# Install 'arc' in R:
install.packages('arc', repos = c('https://kliegr.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/kliegr/arc/issues

Datasets:
  • humtemp - Comfort level based on temperature and humidity of the environment

On CRAN:

5.09 score 7 stars 1 packages 39 scripts 311 downloads 3 mentions 16 exports 8 dependencies

Last updated 5 months agofrom:dc414aa281. Checks:5 OK, 2 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 06 2025
R-4.5-winNOTEJan 06 2025
R-4.5-linuxNOTEJan 06 2025
R-4.4-winOKJan 06 2025
R-4.4-macOKJan 06 2025
R-4.3-winOKJan 06 2025
R-4.3-macOKJan 06 2025

Exports:applyCutapplyCutscbacba_manualcbaCSVcbaIriscbaIrisNumericCBARuleModelCBARuleModelAccuracydiscretizeUnsuperviseddiscrNumericgetAppearancegetConfVectorForROCmdlp2prunetopRules

Dependencies:arulesdiscretizationgenericslatticeMatrixR.methodsS3R.ooR.utils